26 research outputs found

    Charge localization instability in a highly deformable dielectric elastomer

    Get PDF
    This paper shows that a highly deformable capacitor made of a soft dielectric and two conformal electrodes can switch between two states discontinuously, by a first-order transition, as the total charge varies gradually. When the total charge is small, it spreads evenly over the area of the capacitor, and the capacitor deforms homogeneously. When the total charge is large, it localizes in a small region of the capacitor, and this region thins down preferentially. The capacitor will survive the localization without electrical breakdown if the area of the electrode is small. Such a bistable system may lead to useful devices.Engineering and Applied Science

    MEMS cantilever based magnetic field gradient sensor

    No full text
    This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1–103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 ”T and gradients starting from 1 ”T mm−1 can be measured

    Temperature dependency of silicon structures for magnetic field gradient sensing

    No full text
    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors
    corecore